login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282550
Perfect powers that are the sum of two distinct proper prime powers (A246547).
4
25, 36, 81, 125, 144, 196, 324, 512, 576, 1089, 2304, 2744, 2916, 5041, 9216, 14884, 16641, 26244, 36864, 51984, 147456, 236196, 589824, 941192, 1196836, 2125764, 2359296, 9437184, 19131876, 37748736, 67125249, 150994944, 172186884, 322828856, 603979776
OFFSET
1,1
COMMENTS
Intersection of A001597 and A225102. - Michel Marcus, Feb 18 2017
Terms t of A001597 such that A225099(t) > 0. - Felix Fröhlich, Feb 18 2017
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..45 (terms < 2*10^11)
EXAMPLE
512 = 2^9 is a term because 2^9 = 7^3 + 13^2.
MATHEMATICA
Select[Union@ Map[Total, Subsets[With[{nn = 10^6}, Complement[ Select[ Range@ nn, PrimePowerQ], Prime[Range[PrimePi@ nn]]]], {2}]], # == 1 ||
GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* Michael De Vlieger, Feb 18 2017, after Harvey P. Dale at A246547 *)
PROG
(PARI) is(n) = if(!ispower(n), return(0), my(x=n-1, y=1); while(y < x, if(isprimepower(x) && isprimepower(y) && !ispseudoprime(x) && !ispseudoprime(y), return(1)); y++; x--)); 0 \\ Felix Fröhlich, Feb 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Feb 18 2017
EXTENSIONS
More terms from Felix Fröhlich, Feb 18 2017
a(28)-a(35) from Giovanni Resta, May 07 2017
STATUS
approved