login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346526
Positive integers k that are the product of two integers greater than 1 and ending with the same digit as k.
1
25, 36, 75, 96, 100, 121, 125, 156, 175, 200, 216, 225, 231, 256, 275, 276, 300, 325, 336, 341, 375, 396, 400, 416, 425, 441, 451, 456, 475, 500, 516, 525, 561, 575, 576, 600, 625, 636, 651, 671, 675, 676, 696, 700, 725, 736, 756, 775, 781, 800, 816, 825, 861, 875
OFFSET
1,1
COMMENTS
Union of 100*A000027, A053742, A324297 and A346507.
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
25 = 5*5, 36 = 6*6, 75 = 5*15, 96 = 6*16, 100 = 10*10, 121 = 11*11, 125 = 5*25, 156 = 6*26, 175 = 5*35, 200 = 10*20, 216 = 6*36, 225 = 15*15, 231 = 11*21, ...
PROG
(PARI) isok(k) = my(u=k%10); sumdiv(k, d, (d>1) && (d<k) && ((d%10)==u) && ((k/d % 10) == u)) > 0; \\ Michel Marcus, Jul 23 2021
(Lisp)
(setf candidates (list 25)) (setf result nil)
(defun factor (num small-num) (equalp 0 (mod num small-num)))
(defun same-end-digit (num1 num2 num3) (and (equalp (mod num1 10) (mod num2 10)) (equalp (mod num2 10) (mod num3 10))))
(defun good-factor-p (num) (loop for i from 5 to (sqrt num) do ( if (factor num i) ( if (same-end-digit num i (/ num i) ) (return T) ))))
(loop for i from 26 to 9000 do ( if (or (equalp 0 (mod i 10)) (equalp 1 (mod i 10)) (equalp 5 (mod i 10)) (equalp 6 (mod i 10))) (push i candidates)))
(dolist (element candidates) (if (good-factor-p element) (push element result)))
(format t (write-to-string result)) \\ FUNG Cheok Yin, Aug 12 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Jul 22 2021
STATUS
approved