login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282548
Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
3
0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
OFFSET
0,3
COMMENTS
Multiplicative because A013959 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
a(n) = n*A013959(n) for n > 0.
a(n) = (441*A282549(n) + 250*A282576(n) - 691*A058550(n))/65520.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)
MATHEMATICA
Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
PROG
(PARI) a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018
CROSSREFS
Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
Cf. A282549 (E_2*E_4^3), A282576 (E_2*E_6^2), A058550 (E_14).
Cf. A013670.
Sequence in context: A031562 A345507 A346357 * A253712 A345605 A346279
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 18 2017
STATUS
approved