login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282430
Even numbers not divisible by 3 which are not of the form p + 3^x with p prime.
6
2, 328, 562, 716, 794, 898, 1084, 1772, 1808, 1918, 1924, 1972, 2186, 2434, 2564, 2572, 2894, 2986, 3056, 3524, 3578, 3716, 3868, 4144, 4304, 4414, 4714, 4774, 4838, 4852, 4924, 5072, 5098, 5164, 5204, 5272, 5338, 5398, 5456, 5614, 5708, 5756, 5968, 5972, 5974
OFFSET
1,1
COMMENTS
Sequence is infinite, since any integer congruent to 63064644938 modulo 195435717998430 cannot be the sum of a power of three and a prime.
A282432(a(n)) = 0.
LINKS
EXAMPLE
328 is in the sequence since 328 - 3^0 = 3*109, 328 - 3^1 = 5^2*13, 328 - 3^2 = 11*29, 328 - 3^3 = 7*43, 328 - 3^4 = 13*19, and 328 - 3^5 = 5*17 are all composite.
MATHEMATICA
fQ[n_] := If[ Mod[n, 3] > 0, Block[{lmt = Log[3, n], x = 0}, While[x < lmt && !PrimeQ[n - 3^x], x++]; x > lmt], False]; Select[ 2Range@3000, fQ] (* Robert G. Wilson v, Feb 25 2017 *)
PROG
(Magma) lst:=[]; for n in [0..5974 by 2] do if not n mod 3 eq 0 then x:=-1; repeat x+:=1; p:=n-3^x; until p lt 2 or IsPrime(p); if p lt 2 then Append(~lst, n); end if; end if; end for; lst;
(PARI) isok(n) = {if (n % 2, 0, if (n % 3, lim = log(n)/log(3); for (k=0, lim, if (isprime(n - 3^k), return (0)); ); 1, 0); ); } \\ Michel Marcus, Feb 25 2017
CROSSREFS
Cf. A282432.
Intersection of A001651 and A058517. - Michel Marcus, Feb 25 2017
Sequence in context: A262637 A028483 A006475 * A012601 A012606 A012729
KEYWORD
nonn,easy
AUTHOR
STATUS
approved