Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:46:18
%S 2,328,562,716,794,898,1084,1772,1808,1918,1924,1972,2186,2434,2564,
%T 2572,2894,2986,3056,3524,3578,3716,3868,4144,4304,4414,4714,4774,
%U 4838,4852,4924,5072,5098,5164,5204,5272,5338,5398,5456,5614,5708,5756,5968,5972,5974
%N Even numbers not divisible by 3 which are not of the form p + 3^x with p prime.
%C Sequence is infinite, since any integer congruent to 63064644938 modulo 195435717998430 cannot be the sum of a power of three and a prime.
%C A282432(a(n)) = 0.
%H Robert G. Wilson v, <a href="/A282430/b282430.txt">Table of n, a(n) for n = 1..1000</a>
%e 328 is in the sequence since 328 - 3^0 = 3*109, 328 - 3^1 = 5^2*13, 328 - 3^2 = 11*29, 328 - 3^3 = 7*43, 328 - 3^4 = 13*19, and 328 - 3^5 = 5*17 are all composite.
%t fQ[n_] := If[ Mod[n, 3] > 0, Block[{lmt = Log[3, n], x = 0}, While[x < lmt && !PrimeQ[n - 3^x], x++]; x > lmt], False]; Select[ 2Range@3000, fQ] (* _Robert G. Wilson v_, Feb 25 2017 *)
%o (Magma) lst:=[]; for n in [0..5974 by 2] do if not n mod 3 eq 0 then x:=-1; repeat x+:=1; p:=n-3^x; until p lt 2 or IsPrime(p); if p lt 2 then Append(~lst, n); end if; end if; end for; lst;
%o (PARI) isok(n) = {if (n % 2, 0, if (n % 3, lim = log(n)/log(3); for (k=0, lim, if (isprime(n - 3^k), return (0));); 1, 0););} \\ _Michel Marcus_, Feb 25 2017
%Y Cf. A282432.
%Y Intersection of A001651 and A058517. - _Michel Marcus_, Feb 25 2017
%K nonn,easy
%O 1,1
%A _Arkadiusz Wesolowski_, Feb 15 2017