|
|
A281927
|
|
Numbers that are the product of exactly 10 primes and are of the form prime(n) + prime(n + 1).
|
|
0
|
|
|
2304, 3456, 5184, 5376, 8448, 9600, 14400, 14976, 18816, 19008, 19440, 21888, 29440, 30208, 31488, 34048, 36096, 36608, 43264, 43904, 46848, 47040, 47232, 55552, 59520, 60000, 60160, 63936, 69696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Intersection of A001043 and A046314. - Bruno Berselli, Feb 02 2017
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
EXAMPLE
|
2304 = 2^8 * 3^2 = 1151 + 1153, 3456 = 2^7 * 3^3 = 1723 + 1733, 5184 = 2^6 * 3^4 = 2591 + 2593.
|
|
MAPLE
|
with(numtheory): P:=proc(q) local a, n; a:=ithprime(q)+ithprime(q+1);
if bigomega(a)=10 then a; fi; end: seq(P(k), k=1..10^4); # Paolo P. Lava, Feb 02 2017
|
|
MATHEMATICA
|
Total[#] & /@ Select[Partition[Prime[Range[10000]], 2, 1], 10 == PrimeOmega[Total[#]] &]
|
|
CROSSREFS
|
Cf. A001043, A046314.
Cf. A105936 (products of 3 primes), A281925 (products of 4 primes), A281926 (products of 5 primes).
Sequence in context: A270854 A260292 A339349 * A179699 A195652 A256729
Adjacent sequences: A281924 A281925 A281926 * A281928 A281929 A281930
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Feb 02 2017
|
|
STATUS
|
approved
|
|
|
|