login
A179699
Numbers of the form p^8*q^2 where p and q are distinct primes.
5
2304, 6400, 12544, 26244, 30976, 43264, 73984, 92416, 135424, 164025, 215296, 246016, 321489, 350464, 430336, 473344, 565504, 719104, 793881, 891136, 952576, 1108809, 1149184, 1290496, 1364224, 1562500, 1597696, 1763584
OFFSET
1,1
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(8) - P(10) = A085548 * A085968 - P(10) = 0.000843..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 8}; Select[Range[10^6], f]
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/8), t=p^8; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
CROSSREFS
Sequence in context: A359321 A339349 A281927 * A195652 A256729 A204102
KEYWORD
nonn
AUTHOR
STATUS
approved