%I #14 Mar 01 2024 02:05:27
%S 2304,3456,5184,5376,8448,9600,14400,14976,18816,19008,19440,21888,
%T 29440,30208,31488,34048,36096,36608,43264,43904,46848,47040,47232,
%U 55552,59520,60000,60160,63936,69696
%N Numbers that are the product of exactly 10 primes and are of the form prime(n) + prime(n + 1).
%C Intersection of A001043 and A046314. - _Bruno Berselli_, Feb 02 2017
%e 2304 = 2^8 * 3^2 = 1151 + 1153, 3456 = 2^7 * 3^3 = 1723 + 1733, 5184 = 2^6 * 3^4 = 2591 + 2593.
%t Total[#] & /@ Select[Partition[Prime[Range[10000]], 2, 1], 10 == PrimeOmega[Total[#]] &]
%Y Cf. A001043, A046314.
%Y Cf. A105936 (products of 3 primes), A281925 (products of 4 primes), A281926 (products of 5 primes).
%K nonn
%O 1,1
%A _Zak Seidov_, Feb 02 2017