login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281838 Semiprimes that are the sum of 2, 3, 4, and 5 consecutive semiprimes. 1
2705, 88041, 218729, 348242, 654802, 659083, 754462, 1259383, 1928911, 2126545, 2748374, 3226321, 3369122, 3893087, 3913922, 4063289, 4252843, 4605151, 4631323, 6024338, 6482539, 7090654, 8079467, 8759071, 9669602, 9976679, 10209674, 10603319, 10943599, 13448837, 13550506 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(36)=16626281 and a(68)=55710962 are also the sum of 6 consecutive semiprimes. - Zak Seidov, Jun 20 2017

Terms a(926)=1241801401 and a(1982)=3254552229 are also the sum of 6 and 7 consecutive semiprimes. - Zak Seidov, Jun 23 2017

LINKS

Zak Seidov, Table of n, a(n) for n = 1..2200 (a(8)-a(111) from Robert G. Wilson v)

EXAMPLE

a(1) =

A001358(762) = 2705 =

A001358(398) + A001358(399) = 1351 + 1354 =

A001358(270) + ... + A001358(272) = 899 + 901 + 905 =

A001358(201) + ... + A001358(204) = 671 + 674 + 679 + 681 =

A001358(167) + ... + A001358(171) = 537 + 538 + 542 + 543 + 545.

MATHEMATICA

sp = Select[Range@ 10^7, PrimeOmega@# == 2 &];

l2 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/2 &], 2, 1]];

l3 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/3 &], 3, 1]];

l4 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/4 &], 4, 1]];

l5 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/5 &], 5, 1]];

Intersection[sp, l2, l3, l4, l5] (* Robert G. Wilson v, Jan 31 2017 *)

CROSSREFS

Cf. A001358.

Sequence in context: A270542 A250615 A193172 * A205605 A205436 A031550

Adjacent sequences: A281835 A281836 A281837 * A281839 A281840 A281841

KEYWORD

nonn

AUTHOR

Zak Seidov, Jan 31 2017

EXTENSIONS

a(8) onward from Robert G. Wilson v, Jan 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 2 02:53 EDT 2023. Contains 361723 sequences. (Running on oeis4.)