login
A281838
Semiprimes that are the sum of 2, 3, 4, and 5 consecutive semiprimes.
1
2705, 88041, 218729, 348242, 654802, 659083, 754462, 1259383, 1928911, 2126545, 2748374, 3226321, 3369122, 3893087, 3913922, 4063289, 4252843, 4605151, 4631323, 6024338, 6482539, 7090654, 8079467, 8759071, 9669602, 9976679, 10209674, 10603319, 10943599, 13448837, 13550506
OFFSET
1,1
COMMENTS
a(36)=16626281 and a(68)=55710962 are also the sum of 6 consecutive semiprimes. - Zak Seidov, Jun 20 2017
Terms a(926)=1241801401 and a(1982)=3254552229 are also the sum of 6 and 7 consecutive semiprimes. - Zak Seidov, Jun 23 2017
LINKS
Zak Seidov, Table of n, a(n) for n = 1..2200 (a(8)-a(111) from Robert G. Wilson v)
EXAMPLE
a(1) =
A001358(762) = 2705 =
A001358(398) + A001358(399) = 1351 + 1354 =
A001358(270) + ... + A001358(272) = 899 + 901 + 905 =
A001358(201) + ... + A001358(204) = 671 + 674 + 679 + 681 =
A001358(167) + ... + A001358(171) = 537 + 538 + 542 + 543 + 545.
MATHEMATICA
sp = Select[Range@ 10^7, PrimeOmega@# == 2 &];
l2 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/2 &], 2, 1]];
l3 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/3 &], 3, 1]];
l4 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/4 &], 4, 1]];
l5 = Union[ Plus @@@ Partition[ Select[ sp, # < 10^7/5 &], 5, 1]];
Intersection[sp, l2, l3, l4, l5] (* Robert G. Wilson v, Jan 31 2017 *)
CROSSREFS
Cf. A001358.
Sequence in context: A250615 A193172 A367668 * A205605 A205436 A031550
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 31 2017
EXTENSIONS
a(8) onward from Robert G. Wilson v, Jan 31 2017
STATUS
approved