login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281837
T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its king-move neighbors and with new values introduced in order 0 sequentially upwards.
8
1, 2, 2, 4, 8, 4, 8, 31, 31, 8, 16, 121, 163, 121, 16, 32, 472, 926, 926, 472, 32, 64, 1841, 5315, 8240, 5315, 1841, 64, 128, 7181, 30387, 74240, 74240, 30387, 7181, 128, 256, 28010, 174121, 663300, 1053407, 663300, 174121, 28010, 256, 512, 109255, 998069
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8...........16.............32................64
...2......8.......31........121..........472...........1841..............7181
...4.....31......163........926.........5315..........30387............174121
...8....121......926.......8240........74240.........663300...........5954670
..16....472.....5315......74240......1053407.......14783996.........208837689
..32...1841....30387.....663300.....14783996......324602161........7184856176
..64...7181...174121....5954670....208837689.....7184856176......249711414322
.128..28010...998069...53530609...2957076233...159608206156.....8720904906157
.256.109255..5720443..481128867..41858516870..3543794795757...304343654274741
.512.426157.32788987.4324987861.592613243866.78695552108964.10622958299884002
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: [order 7] for n>8
k=4: [order 23] for n>24
k=5: [order 97] for n>99
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1. .0..1..1..0. .0..1..1..0. .0..1..0..1. .0..0..0..1
..0..0..0..0. .0..1..0..0. .0..0..1..0. .0..1..0..1. .0..1..0..0
..1..1..1..0. .0..1..0..1. .1..0..1..0. .1..1..0..1. .0..1..1..1
..1..0..0..0. .1..1..0..1. .1..1..1..0. .0..0..0..0. .1..0..1..0
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A317004 A316822 A317572 * A299081 A299844 A299001
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 31 2017
STATUS
approved