login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299001
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 31, 31, 8, 16, 121, 179, 121, 16, 32, 472, 1073, 1073, 472, 32, 64, 1841, 6479, 10150, 6479, 1841, 64, 128, 7181, 39015, 97462, 97462, 39015, 7181, 128, 256, 28010, 235033, 932318, 1502511, 932318, 235033, 28010, 256, 512, 109255, 1416220
OFFSET
1,2
COMMENTS
Table starts
...1......2.......4.........8..........16............32..............64
...2......8......31.......121.........472..........1841............7181
...4.....31.....179......1073........6479.........39015..........235033
...8....121....1073.....10150.......97462........932318.........8918662
..16....472....6479.....97462.....1502511......23031390.......353088569
..32...1841...39015....932318....23031390.....564821426.....13849577141
..64...7181..235033...8918662...353088569...13849577141....543022804167
.128..28010.1416220..85379274..5420414253..340272636359..21348528789475
.256.109255.8533123.817325435.83214520668.8360888694306.839394891016021
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: [order 10] for n>11
k=4: [order 37] for n>38
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..0. .0..1..1..0
..1..1..1..0. .1..1..0..0. .1..1..0..1. .0..1..0..1. .1..1..1..0
..1..1..0..0. .1..1..0..1. .0..1..0..1. .1..1..0..1. .0..0..0..0
..0..0..0..1. .1..0..0..1. .0..0..0..1. .0..0..1..0. .1..1..0..1
..1..1..1..1. .1..0..0..1. .1..0..0..1. .1..0..0..0. .1..1..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A281831.
Sequence in context: A281837 A299081 A299844 * A299746 A299668 A300259
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 31 2018
STATUS
approved