login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280339
Expansion of phi(x)^2 * chi(x^2)^4 * f(-x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
3
1, 2, -1, -2, -5, -14, 4, 12, 5, 40, 0, -26, 11, -68, -15, 30, -18, 106, 3, -50, -10, -182, 29, 104, 10, 270, 11, -130, 37, -360, -51, 164, -16, 506, -30, -266, -65, -686, 62, 320, 53, 898, 22, -414, 50, -1206, -61, 612, -52, 1560, -4, -696, -81, -1958, 120
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Amanda Clemm, Modular Forms and Weierstrass Mock Modular Forms, Mathematics, volume 4, issue 1, (2016)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x^4)^2 * chi(-x^4)^2 * f(x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/4) * eta(q^2)^6 * eta(q^4)^4 / (eta(q)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [2, -4, 2, -8, 2, -4, 2, -4, ...].
a(n) = (-1)^n * A279955(n).
a(3*n + 1) / a(1) == A138515(n) (mod 3). a(3^3*n + 7) / a(7) == A138515(n) (mod 3^2).
EXAMPLE
G.f. = 1 + 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 + 4*x^6 + 12*x^7 + 5*x^8 + ...
G.f. = q^-1 + 2*q^3 - q^7 - 2*q^11 - 5*q^15 - 14*q^19 + 4*q^23 + 12*q^27 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 QPochhammer[ x]^2 QPochhammer[ -x^2, x^4]^4, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};
CROSSREFS
Sequence in context: A160457 A107087 A279955 * A115141 A031148 A032238
KEYWORD
sign
AUTHOR
Michael Somos, Dec 31 2016
STATUS
approved