login
A280340
a(n) = a(n-1) + 10^n * a(n-2) with a(0) = 1 and a(1) = 1.
3
1, 1, 101, 1101, 1011101, 111111101, 1011212111101, 1112122222111101, 101122323232322111101, 1112223344434333322111101, 1011224344546565545343322111101, 111223345667777878776655443322111101, 1011224455769911213121200887756443322111101
OFFSET
0,3
COMMENTS
The Rogers-Ramanujan continued fraction is defined by R(q) = q^(1/5)/(1+q/(1+q^2/(1+q^3/(1+ ... )))). The limit of a(n)/A015468(n+2) is 10^(-1/5) * R(10).
a(n) has A004652(n+1) digits. The last n digits are the same as the last n digits of a(n-1). - Robert Israel, Jan 12 2017
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
a(n) a(n-3) = 10 a(n-2) a(n-1) - 10 a(n-2)^2 + a(n-1) a(n-3). - Robert Israel, Jan 12 2017
EXAMPLE
1/1 = a(0)/A015468(2).
1/(1+10/1) = 1/11 = a(1)/A015468(3).
1/(1+10/(1+10^2/1)) = 101/111 = a(2)/A015468(4).
1/(1+10/(1+10^2/(1+10^3/1))) = 1101/11111 = a(3)/A015468(5).
MAPLE
A[0]:= 1: A[1]:= 1:
for n from 2 to 20 do A[n]:= A[n-1]+10^n*A[n-2] od:
seq(A[i], i=0..20); # Robert Israel, Jan 12 2017
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==1, a[n]==a[n-1]+10^n a[n-2]}, a, {n, 15}] (* Harvey P. Dale, Jul 12 2020 *)
CROSSREFS
Cf. similar sequences with the recurrence a(n-1) + q^n * a(n-2) for n>1, a(0)=1 and a(1)=1: A280294 (q=2), A279543 (q=3), this sequence (q=10).
Sequence in context: A048177 A283504 A267270 * A283589 A284403 A267350
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 31 2016
STATUS
approved