The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160457 a(n) = n^2 - 2*n + 2. 2
 2, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Competition number of the complete bipartite graph K_n,n. Formula given on p. 3 of Sano. LINKS Yoshio Sano, The competition numbers of regular polyhedra, arXiv:0905.1763 [math.CO], 2009. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1)+2*n-3 (with a(0)=2). - Vincenzo Librandi, Dec 03 2010 a(n)= +3*a(n-1) -3*a(n-2) +a(n-3). G.f.: -(2-5*x+5*x^2)/(x-1)^3. a(n) = A002522(n-1). - Michel Marcus, Feb 03 2016 MATHEMATICA Table[n^2-2*n+2, {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *) LinearRecurrence[{3, -3, 1}, {2, 1, 2}, 60] (* Harvey P. Dale, Mar 29 2015 *) PROG (PARI) vector(100, n, n--; n^2 - 2*n + 2) CROSSREFS Cf. A002522, A160450. Sequence in context: A117715 A330962 A327194 * A107087 A279955 A280339 Adjacent sequences:  A160454 A160455 A160456 * A160458 A160459 A160460 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, May 14 2009 EXTENSIONS More terms from Vincenzo Librandi, Nov 08 2009 Sequence corrected by Joerg Arndt, Dec 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 03:25 EDT 2021. Contains 343030 sequences. (Running on oeis4.)