|
|
A160457
|
|
a(n) = n^2 - 2*n + 2.
|
|
2
|
|
|
2, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Competition number of the complete bipartite graph K_n,n.
Formula given on p. 3 of Sano.
|
|
LINKS
|
Table of n, a(n) for n=0..54.
Yoshio Sano, The competition numbers of regular polyhedra, arXiv:0905.1763 [math.CO], 2009.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = a(n-1)+2*n-3 (with a(0)=2). - Vincenzo Librandi, Dec 03 2010
a(n)= +3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: -(2-5*x+5*x^2)/(x-1)^3.
a(n) = A002522(n-1). - Michel Marcus, Feb 03 2016
|
|
MATHEMATICA
|
Table[n^2-2*n+2, {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
LinearRecurrence[{3, -3, 1}, {2, 1, 2}, 60] (* Harvey P. Dale, Mar 29 2015 *)
|
|
PROG
|
(PARI) vector(100, n, n--; n^2 - 2*n + 2)
|
|
CROSSREFS
|
Cf. A002522, A160450.
Sequence in context: A117715 A330962 A327194 * A107087 A279955 A280339
Adjacent sequences: A160454 A160455 A160456 * A160458 A160459 A160460
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, May 14 2009
|
|
EXTENSIONS
|
More terms from Vincenzo Librandi, Nov 08 2009
Sequence corrected by Joerg Arndt, Dec 03 2010
|
|
STATUS
|
approved
|
|
|
|