login
A280250
Sum of the smaller parts of the partitions of 2n into 2 squarefree parts.
4
1, 3, 4, 6, 8, 14, 11, 17, 16, 32, 27, 39, 39, 58, 47, 61, 65, 93, 67, 95, 80, 130, 94, 142, 106, 203, 130, 189, 151, 232, 165, 246, 187, 311, 235, 362, 260, 389, 259, 377, 283, 442, 306, 473, 367, 511, 407, 530, 395, 625, 458, 673, 493, 801, 507, 782, 548, 842, 590, 901
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} i * mu(i)^2 * mu(2*n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280252(n) - A280251(n).
MAPLE
with(numtheory): A280250:=n->sum(i*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280250(n), n=1..100);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 29 2016
STATUS
approved