|
|
A050475
|
|
Numbers n such that x = 2^n-2 satisfies phi(x)+2 = phi(x+2).
|
|
4
|
|
|
3, 4, 6, 8, 14, 18, 20, 32, 62, 90, 108, 128, 522, 608, 1280, 2204, 2282, 3218, 4254, 4424, 9690, 9942, 11214, 19938, 21702, 23210, 44498, 86244, 110504, 132050, 216092, 756840, 859434, 1257788, 1398270, 2976222, 3021378, 6972594, 13466918, 20996012, 24036584, 25964952, 30402458, 32582658
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Other solutions of this equation are in A001838.
Also, n such that 2^(n-1)-1 is prime. Proof: If x=2^n-2, phi(x)+2=phi(x+2) <==> phi(2^n-2)+2=phi(2^n) <==> phi(2(2^(n-1)-1)) + 2 = 2^n(1-1/2) <==> phi(2)*phi(2^(n-1)-1)+2=2^(n-1) <==> phi(2^(n-1)-1) = 2^(n-1)-2 if y=2^(n-1)-1. We have ph(y)=y-1 <==> y=2^(n-1)-1 is prime. Therefore a(n) = A000043(n)+1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004
|
|
LINKS
|
|
|
FORMULA
|
a(n) = A000043(n) + 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004
|
|
EXAMPLE
|
phi(2^18-2)+2=131072=phi(2^18), so 18 is in the sequence.
|
|
MATHEMATICA
|
Flatten[Position[EulerPhi[2^# - 2] + 2 == EulerPhi[2^# ] & /@ Range[1, 250], True]] (* Vit Planocka *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|