login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050475 Numbers n such that x = 2^n-2 satisfies phi(x)+2 = phi(x+2). 4
3, 4, 6, 8, 14, 18, 20, 32, 62, 90, 108, 128, 522, 608, 1280, 2204, 2282, 3218, 4254, 4424, 9690, 9942, 11214, 19938, 21702, 23210, 44498, 86244, 110504, 132050, 216092, 756840, 859434, 1257788, 1398270, 2976222, 3021378, 6972594, 13466918, 20996012, 24036584, 25964952, 30402458, 32582658 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Other solutions of this equation are in A001838.
Also, n such that 2^(n-1)-1 is prime. Proof: If x=2^n-2, phi(x)+2=phi(x+2) <==> phi(2^n-2)+2=phi(2^n) <==> phi(2(2^(n-1)-1)) + 2 = 2^n(1-1/2) <==> phi(2)*phi(2^(n-1)-1)+2=2^(n-1) <==> phi(2^(n-1)-1) = 2^(n-1)-2 if y=2^(n-1)-1. We have ph(y)=y-1 <==> y=2^(n-1)-1 is prime. Therefore a(n) = A000043(n)+1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..47 (derived from A000043)
FORMULA
a(n) = A000043(n) + 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004
EXAMPLE
phi(2^18-2)+2=131072=phi(2^18), so 18 is in the sequence.
MATHEMATICA
Flatten[Position[EulerPhi[2^# - 2] + 2 == EulerPhi[2^# ] & /@ Range[1, 250], True]] (* Vit Planocka *)
CROSSREFS
Sequence in context: A280250 A356081 A004713 * A340770 A242870 A025073
KEYWORD
nonn,changed
AUTHOR
Jud McCranie, Dec 24 1999
EXTENSIONS
a(39)-a(44) from Ivan Panchenko, Apr 11 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 08:13 EDT 2024. Contains 375932 sequences. (Running on oeis4.)