OFFSET
1,3
COMMENTS
In 1916, Ramanujan found the following identity. tau(n) = sigma_11(n) - 691/756 * (sigma_11(n) - sigma_5(n) + 252 * a(n)). This implies tau(n) == sigma_11(n) mod 691.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000
FORMULA
A027860(n) = (sigma_11(n) - sigma_5(n) + 252*a(n))/756.
PROG
(PARI) a(n) = sum(k=1, n-1, sigma(k, 5)*sigma(n-k, 5)) \\ Felix Fröhlich, Jan 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 22 2016
STATUS
approved