login
A279889
a(n) = Sum_{k=1..n-1} sigma_5(k)*sigma_5(n-k).
4
0, 1, 66, 1577, 18218, 135550, 738236, 3207785, 11714718, 37347144, 106499470, 277489886, 668981686, 1512360404, 3228797252, 6570019945, 12793050456, 24001960051, 43483452090, 76485144056, 130752372320, 218220937122, 355664809556, 568293832670, 889969136158
OFFSET
1,3
COMMENTS
In 1916, Ramanujan found the following identity. tau(n) = sigma_11(n) - 691/756 * (sigma_11(n) - sigma_5(n) + 252 * a(n)). This implies tau(n) == sigma_11(n) mod 691.
LINKS
FORMULA
A027860(n) = (sigma_11(n) - sigma_5(n) + 252*a(n))/756.
PROG
(PARI) a(n) = sum(k=1, n-1, sigma(k, 5)*sigma(n-k, 5)) \\ Felix Fröhlich, Jan 01 2017
CROSSREFS
Cf. Sum_{k=1..n-1} sigma_m(k)*sigma_m(n-k): A087115 (m=3), this sequence (m=5).
Sequence in context: A278850 A104673 A251047 * A241799 A269498 A133318
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 22 2016
STATUS
approved