login
A104673
a(n) = C(n+5,5)*C(n+10,n+0).
1
1, 66, 1386, 16016, 126126, 756756, 3699696, 15402816, 56316546, 184940756, 554822268, 1540663488, 4001445448, 9802357488, 22805484768, 50678855040, 108088495515, 222161129190, 441579528390, 851355545040, 1596291646950, 2917485413700, 5208073135200
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
G.f.: (252*x^5+1050*x^4+1200*x^3+450*x^2+50*x+1)/(x-1)^16. - Harvey P. Dale, Nov 24 2011
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 17875*Pi^2/3 - 7468753315/127008.
Sum_{n>=0} (-1)^n/a(n) = 208828891/127008 - 725*Pi^2/6 - 40960*log(2)/63. (End)
EXAMPLE
If n=0 then C(0+5,5)*C(0+10,0+0)= C(5,5)*C(10,0)=1*1=1
If n=6 then C(6+5,5)*C(6+10,6+0)= C(11,5)*C(16,6)=462*8008=3699696
MATHEMATICA
Table[Binomial[n+5, 5]Binomial[n+10, n], {n, 0, 30}]
CROSSREFS
Cf. A062190.
Sequence in context: A263522 A269693 A278850 * A251047 A279889 A241799
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 22 2005
EXTENSIONS
Corrected and extended by Harvey P. Dale, Nov 24 2011
STATUS
approved