login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027860
a(n) = (-tau(n) + sigma_11(n)) / 691, where tau is Ramanujan's tau (A000594), sigma_11(n) = Sum_{ d divides n } d^11 (A013959).
9
0, 3, 256, 6075, 70656, 525300, 2861568, 12437115, 45414400, 144788634, 412896000, 1075797268, 2593575936, 5863302600, 12517805568, 25471460475, 49597544448, 93053764671, 168582124800, 296526859818, 506916761600, 846025507836, 1378885295616, 2203231674900
OFFSET
1,2
COMMENTS
It appears that this sequence is strictly increasing. - Jianing Song, Aug 05 2018
REFERENCES
"Number Theory I", vol. 49 of the Encyc. of Math. Sci.
LINKS
FORMULA
a(n) = (A013959(n) - A000594(n))/691. - Michel Marcus, Nov 12 2014
MAPLE
N:= 100: # to get a(1) to a(N)
S:= series(q*mul((1-q^k)^24, k=1..N), q, N+1):
seq((-coeff(S, q, n) + add(d^11, d = numtheory:-divisors(n)))/691, n=1..N); # Robert Israel, Nov 12 2014
MATHEMATICA
{0}~Join~Array[(-RamanujanTau@ # + DivisorSigma[11, #])/691 &, 24] (* Michael De Vlieger, Aug 05 2018 *)
PROG
(Macsyma) (sum(n^11*q^n/(1-q^n), n, 1, inf)-q*prod(1-q^n, n, 1, inf)^24)/691; taylor(%, q, 0, 24);
(PARI) a(n) = (sigma(n, 11) - polcoeff( x * eta(x + x * O(x^n))^24, n))/691; \\ for n>0; Michel Marcus, Nov 12 2014
(Sage)
def A027860List(len):
r = list(delta_qexp(len+1))
return [(sigma(n, 11) - r[n])/691 for n in (1..len)]
A027860List(24) # Peter Luschny, Aug 20 2018
CROSSREFS
Similar sequences: A281788, A281876, A281928, A281956, A281979.
Sequence in context: A320023 A364876 A045824 * A059947 A203495 A051490
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 12 2014
STATUS
approved