login
A279592
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = Pi/2.
1
1, -3, 5, -9, 18, -36, 72, -144, 287, -570, 1132, -2250, 4473, -8892, 17676, -35137, 69847, -138845, 276002, -548649, 1090629, -2168001, 4309649, -8566912, 17029689, -33852374, 67293256, -133768530, 265911039, -528589801, 1050754338, -2088736250, 4152082903
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = Pi/2.
MATHEMATICA
z = 30; r = Pi/2;
f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]
PROG
(PARI) r = Pi/2;
Vec(1/sum(k=0, 70, floor(r*(k + 1))*x^k) + O(x^71)) \\ Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A279607.
Sequence in context: A288230 A289262 A288231 * A288229 A293332 A288135
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved