login
A279589
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = -1 + sqrt(5).
1
1, -2, 1, 0, -1, 3, -3, 1, 0, -1, 3, -3, 1, 0, -1, 3, -3, 1, 0, -1, 4, -7, 7, -4, -1, 9, -17, 17, -9, -1, 14, -27, 27, -14, -1, 19, -37, 38, -23, 5, 21, -53, 68, -58, 29, 23, -89, 133, -128, 73, 25, -145, 233, -233, 138, 23, -215, 366, -385, 257, -24, -281
OFFSET
0,2
LINKS
EXAMPLE
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = -1 + sqrt(5).
MATHEMATICA
z = 30; r = -1 + Sqrt[5];
f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]
CROSSREFS
Cf. A001961.
Sequence in context: A082601 A286509 A213887 * A279594 A335162 A077593
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved