login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279594
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(6)/2.
1
1, -2, 1, 0, -1, 3, -3, 1, 0, -1, 3, -3, 2, -4, 5, -1, -3, 7, -14, 15, -6, -2, 8, -18, 22, -17, 18, -17, -4, 29, -47, 69, -71, 28, 24, -63, 110, -136, 109, -76, 36, 76, -213, 296, -348, 316, -92, -215, 455, -664, 767, -595, 270, 102, -697, 1383, -1745, 1742
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(6)/2.
MATHEMATICA
z = 30; r = Sqrt[6]/2;
f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]
PROG
(PARI) r = sqrt(6)/2;
Vec(1/sum(k=0, 60, floor(r*(k + 1))*x^k) + O(x^61)) \\ Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A279607.
Sequence in context: A286509 A213887 A279589 * A335162 A077593 A363778
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved