

A288230


Coefficients of 1/(Sum_{k>=0} [(k+1)*r](x)^k), where r = Sqrt[5/2] and [ ] = floor.


2



1, 3, 5, 9, 18, 36, 71, 138, 268, 522, 1017, 1980, 3853, 7498, 14594, 28406, 55287, 107604, 209428, 407608, 793325, 1544042, 3005154, 5848902, 11383662, 22155913, 43121842, 83927627, 163347533, 317921733, 618768013, 1204302235, 2343921860, 4561952576
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture: the sequence is strictly increasing.


LINKS



FORMULA

G.f.: 1/(Sum_{k>=0} [(k+1)*r)](x)^k), where r = sqrt(5/2) and [ ] = floor.


MATHEMATICA

r = Sqrt[5/2];
u = 1000; (* # initial terms from given series *)
v = 100; (* # coefficients in reciprocal series *)
CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (x)^k, {k, 0, u}], {x, 0, v}], x]


CROSSREFS

Cf. A078140 (includes guide to related sequences).


KEYWORD

nonn,easy


AUTHOR



STATUS

approved



