The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289914 Coefficients of 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 7/5. 2
 1, 3, 5, 9, 18, 35, 66, 124, 234, 441, 830, 1563, 2944, 5544, 10440, 19661, 37026, 69727, 131310, 247284, 465686, 876981, 1651534, 3110175, 5857092, 11030096, 20771916, 39117745, 73666674, 138729339, 261255578, 491997420, 926531266, 1744846929, 3285901854 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture: the sequence is strictly increasing. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1). FORMULA G.f.: 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 7/5. From Colin Barker, Jul 19 2017: (Start) G.f.: (1+x)^2*(1-x+x^2-x^3+x^4) / (1-2*x+x^2-2*x^3+x^4). a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n>3. (End) MATHEMATICA z = 2000; r = 7/5; u = CoefficientList[Series[1/Sum[Round[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x]; (* A289914 *) v = N[u[[z]]/u[[z - 1]], 200] RealDigits[v, 10][[1]] (* A289915 *) PROG (PARI) Vec((1+x)^2*(1-x+x^2-x^3+x^4) / (1-2*x+x^2-2*x^3+x^4) + O(x^50)) \\ Colin Barker, Jul 20 2017 CROSSREFS Cf. A078140 (includes guide to related sequences), A289915. Sequence in context: A120941 A108227 A289912 * A251704 A288230 A289262 Adjacent sequences: A289911 A289912 A289913 * A289915 A289916 A289917 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 16:11 EDT 2024. Contains 371844 sequences. (Running on oeis4.)