login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278969
Number of 7-digit numbers whose sum of digits is n.
5
1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5004, 7995, 12306, 18312, 26418, 37038, 50568, 67353, 87648, 111573, 139068, 169863, 203463, 239148, 275988, 312873, 348558, 381723, 411048, 435303, 453438, 464653, 468448, 464653, 453438, 435303, 411048, 381723, 348558, 312873, 275988, 239148, 203463, 169863, 139068, 111573, 87648, 67353, 50568, 37038, 26418, 18312, 12306, 7995, 5004, 3003, 1716, 924, 462, 210, 84, 28, 7, 1
OFFSET
1,2
COMMENTS
There are 9000000 numbers with 7 decimal digits, the smallest being 1000000 and the largest 9999999.
Differs for n >= 10 (5004 vs 5005) from A000579(n+5) = binomial(n+5,6). - M. F. Hasler, Mar 05 2017
FORMULA
G.f.: (x - x^10)/(1 - x)*((1 - x^10)/(1 - x))^6. - Michael De Vlieger, Dec 07 2016
a(64-n) = a(n), 1 <= n <= 63. - M. F. Hasler, Mar 05 2017
EXAMPLE
a(2)=7: 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000.
MATHEMATICA
Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 6 (* or *)
Function[w, Count[w, #] & /@ Range[Max@ w]]@ Map[Total@ IntegerDigits@ # &, Range[10^#, 10^(# + 1) - 1]] &@ 6 (* Michael De Vlieger, Dec 07 2016 *)
PROG
(PARI) b=vector(63, i, 0); for(n=1000000, 9999999, a=eval(Vec(Str(n))); b[sum(j=1, 7, a[j])]++); for(n=1, 63, print1(b[n], ", "))
(PARI) Vec((1-x^9)*(1-x^10)^6/(1-x)^7) \\ shorter than (1-x^9)/(1-x)*((1-x^10)/(1-x))^6, but not better. - M. F. Hasler, Mar 05 2017
CROSSREFS
A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278971 (8-digit numbers).
Sequence in context: A008489 A023032 A341204 * A000579 A290994 A049017
KEYWORD
base,fini,full,nonn,easy
AUTHOR
Daniel Mondot, Dec 02 2016
STATUS
approved