login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 7-digit numbers whose sum of digits is n.
5

%I #16 Mar 06 2017 19:49:01

%S 1,7,28,84,210,462,924,1716,3003,5004,7995,12306,18312,26418,37038,

%T 50568,67353,87648,111573,139068,169863,203463,239148,275988,312873,

%U 348558,381723,411048,435303,453438,464653,468448,464653,453438,435303,411048,381723,348558,312873,275988,239148,203463,169863,139068,111573,87648,67353,50568,37038,26418,18312,12306,7995,5004,3003,1716,924,462,210,84,28,7,1

%N Number of 7-digit numbers whose sum of digits is n.

%C There are 9000000 numbers with 7 decimal digits, the smallest being 1000000 and the largest 9999999.

%C Differs for n >= 10 (5004 vs 5005) from A000579(n+5) = binomial(n+5,6). - _M. F. Hasler_, Mar 05 2017

%F G.f.: (x - x^10)/(1 - x)*((1 - x^10)/(1 - x))^6. - _Michael De Vlieger_, Dec 07 2016

%F a(64-n) = a(n), 1 <= n <= 63. - _M. F. Hasler_, Mar 05 2017

%e a(2)=7: 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000.

%t Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 6 (* or *)

%t Function[w, Count[w, #] & /@ Range[Max@ w]]@ Map[Total@ IntegerDigits@ # &, Range[10^#, 10^(# + 1) - 1]] &@ 6 (* _Michael De Vlieger_, Dec 07 2016 *)

%o (PARI) b=vector(63, i, 0); for(n=1000000, 9999999, a=eval(Vec(Str(n))); b[sum(j=1, 7, a[j])]++); for(n=1, 63, print1(b[n], ", "))

%o (PARI) Vec((1-x^9)*(1-x^10)^6/(1-x)^7) \\ shorter than (1-x^9)/(1-x)*((1-x^10)/(1-x))^6, but not better. - _M. F. Hasler_, Mar 05 2017

%Y A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278971 (8-digit numbers).

%K base,fini,full,nonn,easy

%O 1,2

%A _Daniel Mondot_, Dec 02 2016