login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278971
Number of 8-digit numbers whose sum of digits is n.
5
1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11439, 19433, 31732, 50016, 76350, 113178, 163284, 229713, 315645, 424215, 558279, 720147, 911304, 1132140, 1381710, 1657545, 1955535, 2269905, 2593305, 2917035, 3231405, 3526195, 3791180, 4016685, 4194135, 4316565, 4379055, 4379055, 4316565, 4194135, 4016685, 3791180, 3526195, 3231405, 2917035, 2593305, 2269905, 1955535, 1657545, 1381710, 1132140, 911304, 720147, 558279, 424215, 315645, 229713, 163284, 113178, 76350, 50016, 31732, 19433, 11439, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1
OFFSET
1,2
COMMENTS
There are 90000000 numbers with 8 decimal digits, the smallest being 10000000 and the largest 99999999.
FORMULA
G.f.: (x - x^10)/(1 - x)*((1 - x^10)/(1 - x))^7. - Michael De Vlieger, Dec 07 2016
EXAMPLE
a(2)=8: 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 20000000.
MATHEMATICA
Rest@ CoefficientList[Series[(x - x^10)/(1 - x) ((1 - x^10)/(1 - x))^#, {x, 0, 9 (# + 1)}], x] &@ 7 (* Michael De Vlieger, Dec 07 2016 *)
PROG
(PARI) b=vector(72, i, 0); for(n=10000000, 99999999, a=eval(Vec(Str(n))); b[sum(j=1, 8, a[j])]++); for(n=1, 72, print1(b[n], ", "))
CROSSREFS
Cf. A071817 (3-digit numbers), A090579 (4-digit numbers), A090580 (5-digit numbers), A090581 (6-digit numbers), A278969 (7-digit numbers).
Sequence in context: A008490 A023033 A341205 * A000580 A290995 A229888
KEYWORD
base,fini,full,nonn,easy
AUTHOR
Daniel Mondot, Dec 02 2016
STATUS
approved