login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278947
Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
2
0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
OFFSET
0,3
COMMENTS
Inverse Moebius transform of heptagonal numbers (A000566).
LINKS
Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms.
Eric Weisstein's World of Mathematics, Heptagonal Number.
FORMULA
G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
a(n) = (5*A001157(n) - 3*A000203(n))/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024
MATHEMATICA
nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
PROG
(PARI) a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024
CROSSREFS
Cf. A000203, A000566 (heptagonal numbers), A002117, A059358.
Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), A116913 (k=5), A278945 (k=6), this sequence (k=7).
Sequence in context: A127873 A192975 A156198 * A359265 A153026 A297302
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Dec 02 2016
STATUS
approved