OFFSET
0,3
COMMENTS
Inverse Moebius transform of heptagonal numbers (A000566).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms.
Eric Weisstein's World of Mathematics, Heptagonal Number.
FORMULA
G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024
MATHEMATICA
nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
PROG
(PARI) a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Dec 02 2016
STATUS
approved