login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
2

%I #30 Dec 30 2024 02:16:06

%S 0,1,8,19,42,56,107,113,190,208,298,287,483,404,589,614,806,698,1079,

%T 875,1302,1202,1471,1289,2035,1581,2062,1990,2541,2060,3142,2357,3318,

%U 2978,3544,3178,4641,3368,4435,4166,5390,4142,6106,4559,6279,5798,6517,5453,8339,6042,7998,7142,8778,6944,10070,7822,10445,8930,10390

%N Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).

%C Inverse Moebius transform of heptagonal numbers (A000566).

%H Seiichi Manyama, <a href="/A278947/b278947.txt">Table of n, a(n) for n = 0..10000</a>

%H Mira Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H Mira Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a>.

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>.

%F G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).

%F Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.

%F a(n) = Sum_{d|n} d*(5*d - 3)/2.

%F a(n) = (5*A001157(n) - 3*A000203(n))/2.

%F Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - _Amiram Eldar_, Dec 29 2024

%t nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%t Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* _Vaclav Kotesovec_, Dec 05 2016 *)

%o (PARI) a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ _Amiram Eldar_, Dec 29 2024

%Y Cf. A000203, A000566 (heptagonal numbers), A002117, A059358.

%Y Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), A116913 (k=5), A278945 (k=6), this sequence (k=7).

%K nonn,easy

%O 0,3

%A _Ilya Gutkovskiy_, Dec 02 2016