login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278813
Decimal expansion of c in the sequence b(n+1) = c^(b(n)/n) A278453, where b(1)=0 and c is chosen such that the sequence neither explodes nor goes to 1.
7
5, 7, 5, 8, 1, 9, 5, 9, 3, 9, 1, 1, 0, 3, 7, 4, 9, 4, 1, 9, 7, 4, 0, 2, 8, 8, 6, 5, 0, 0, 9, 3, 2, 9, 0, 9, 2, 4, 7, 4, 2, 4, 2, 6, 4, 7, 0, 5, 5, 3, 1, 5, 4, 1, 5, 1, 4, 1, 2, 5, 9, 9, 0, 6, 1, 9, 7, 1, 0, 7, 5, 9, 8, 9, 1, 5, 8, 7, 2, 3, 0, 8, 3, 3, 3, 7, 8, 7, 0, 6, 9, 5, 8, 7, 9, 1, 1, 5, 7, 2, 0, 0, 5, 6, 2, 9, 5, 0, 5, 6, 3, 2, 1, 1, 0, 5, 7, 1, 4, 7, 1, 3, 5, 9, 5, 0, 6, 0, 7, 7
OFFSET
1,1
COMMENTS
There exists a unique value of c for which the sequence b(n) does not converge to 1 and at the same time always satisfies b(n-1)b(n+1)/b(n)^2 < 1.
If c were chosen smaller the sequence b(n) would approach 1, if it were chosen greater it would at some point violate b(n-1)b(n+1)/b(n)^2 < 1 and from there on quickly escalate.
The value of c is found through trial and error. Suppose one starts with c = 5, the sequence b(n) would continue b(2) = 1, b(3) = 2.23..., b(4) = 3.31..., b(5) = 3.80..., b(6) = 3.39..., b(7) = 2.48..., b(8) = 1.77... and from there one can see that such a sequence is tending to 1. One continues by trying a larger value, say c = 6, which gives rise to b(2) = 1, b(3) = 2.44, b(4) = 4.31..., b(5) = 6.92..., b(6) = 11.94..., b(7) = 35.38... and from there one can see that such a sequence is escalating too fast. Therefore, one now knows that the true value of c is between 5 and 6.
c satisfies 2*log_c(3*log_c(4*log_c(...))) = 1. - Andrey Zabolotskiy, Dec 02 2016
No closed form expression is known. Probably transcendental but this is unproved. - Robert G. Wilson v, Dec 02 2016
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..2500 (first 1000 from Rok Cestnik)
EXAMPLE
5.75819593911037494197402886500932909247424264705531...
MATHEMATICA
b1 = 0;
n = 100;
acc = Round[n*1.2];
th = 1000000;
c = 0;
For[p = 0, p < acc, ++p, For[d = 0, d < 9, ++d, c = c + 1/10^p;
bn = b1;
For[i = 1, i < Round[n*1.2], ++i, bn = N[c^(bn/i), acc];
If[bn > th, Break[]]; ];
If[bn > th, {c = c - 1/10^p;
Break[];
}];
];
];
N[c, n]
CROSSREFS
For sequence round(b(n)) see A278453.
For different values of b(1) see A278808, A278809, A278810, A278811, A278812.
Sequence in context: A247872 A306400 A090987 * A217167 A348052 A195498
KEYWORD
nonn,cons,nice
AUTHOR
Rok Cestnik, Nov 28 2016
STATUS
approved