login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278815
Number of tilings of a 2 X n grid with monomers, dimers, and trimers.
1
1, 2, 7, 29, 109, 416, 1596, 6105, 23362, 89415, 342193, 1309593, 5011920, 19180976, 73406985, 280933906, 1075154535, 4114694797, 15747237101, 60265824784, 230641706484, 882682631025, 3378090801226, 12928199853783, 49477163668857, 189352713633433
OFFSET
0,2
COMMENTS
The first three terms are the same as A030186 because there are only monomers and dimers in boards with n<3.
LINKS
Kathryn Haymaker and Sara Robertson, Counting Colorful Tilings of Rectangular Arrays, Journal of Integer Sequences, Vol. 20 (2017), Article 17.5.8, Corollary 2.
FORMULA
a(n) = 3*a(n-1) + 2*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-6).
G.f.: (1 - x - x^2 - x^3)/(1 - 3*x - 2*x^2 - 5*x^3 + 2*x^4 + x^6).
MAPLE
seq(coeff(series((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
MATHEMATICA
LinearRecurrence[{3, 2, 5, -2, 0, -1}, {1, 2, 7, 29, 109, 416}, 30] (* G. C. Greubel, Oct 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+ 2*x^4 +x^6)) \\ G. C. Greubel, Oct 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) )); // G. C. Greubel, Oct 28 2019
(Sage)
def A278815_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) ).list()
A278815_list(30) # G. C. Greubel, Oct 28 2019
(GAP) a:=[1, 2, 7, 29, 109, 416];; for n in [7..30] do a[n]:=3*a[n-1]+2*a[n-2] +5*a[n-3]-2*a[n-4]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kathryn Haymaker, Nov 28 2016
STATUS
approved