|
|
A277593
|
|
Numbers k such that k/10^m == 6 mod 10, where 10^m is the greatest power of 10 that divides n.
|
|
11
|
|
|
6, 16, 26, 36, 46, 56, 60, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 160, 166, 176, 186, 196, 206, 216, 226, 236, 246, 256, 260, 266, 276, 286, 296, 306, 316, 326, 336, 346, 356, 360, 366, 376, 386, 396, 406, 416, 426, 436, 446, 456, 460, 466, 476, 486
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Positions of 6 in A065881.
Numbers having 6 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_] := Flatten[Position[a[b], d]]
p[10, 1] (* A277588 *)
p[10, 2] (* A277589 *)
p[10, 3] (* A277590 *)
p[10, 4] (* A277591 *)
p[10, 5] (* A277592 *)
p[10, 6] (* A277593 *)
p[10, 7] (* A277594 *)
p[10, 8] (* A277595 *)
p[10, 9] (* A277596 *)
|
|
PROG
|
(PARI) is(n)=n && n/10^valuation(n, 10)%10==6 \\ Charles R Greathouse IV, Jan 31 2017
|
|
CROSSREFS
|
Cf. A277588-A277592, A277594-A277596.
Sequence in context: A011536 A283609 A043513 * A017341 A232491 A191157
Adjacent sequences: A277590 A277591 A277592 * A277594 A277595 A277596
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Clark Kimberling, Nov 07 2016
|
|
STATUS
|
approved
|
|
|
|