login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that k/10^m == 6 mod 10, where 10^m is the greatest power of 10 that divides n.
11

%I #9 Jan 31 2017 00:59:13

%S 6,16,26,36,46,56,60,66,76,86,96,106,116,126,136,146,156,160,166,176,

%T 186,196,206,216,226,236,246,256,260,266,276,286,296,306,316,326,336,

%U 346,356,360,366,376,386,396,406,416,426,436,446,456,460,466,476,486

%N Numbers k such that k/10^m == 6 mod 10, where 10^m is the greatest power of 10 that divides n.

%C Positions of 6 in A065881.

%C Numbers having 6 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

%H Clark Kimberling, <a href="/A277593/b277593.txt">Table of n, a(n) for n = 1..10000</a>

%t z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]

%t p[b_, d_] := Flatten[Position[a[b], d]]

%t p[10, 1] (* A277588 *)

%t p[10, 2] (* A277589 *)

%t p[10, 3] (* A277590 *)

%t p[10, 4] (* A277591 *)

%t p[10, 5] (* A277592 *)

%t p[10, 6] (* A277593 *)

%t p[10, 7] (* A277594 *)

%t p[10, 8] (* A277595 *)

%t p[10, 9] (* A277596 *)

%o (PARI) is(n)=n && n/10^valuation(n,10)%10==6 \\ _Charles R Greathouse IV_, Jan 31 2017

%Y Cf. A277588-A277592, A277594-A277596.

%K nonn,easy,base

%O 1,1

%A _Clark Kimberling_, Nov 07 2016