This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277347 a(n) = Product_{k=1..n} (2*k*(k-1)+1). 1
 1, 5, 65, 1625, 66625, 4064125, 345450625, 39035920625, 5660208490625, 1024497736803125, 226413999833490625, 59999709955875015625, 18779909216188879890625, 6854666863908941160078125, 2885814749705664228392890625, 1388076894608424493856980390625, 756501907561591349152054312890625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Fang (see link) proves that a(n) is never a square for n > 1. LINKS Jin-Hui Fang, Neither Product{k=1..n} (4k^2+1) nor Product{k=1..n} (2k(k-1)+1) is a perfect square, Integers, A16, Volume 9 (2009). FORMULA a(n) ~ cosh(Pi/2) * 2^(n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 10 2016 a(n) = 2^n * |Gamma(1/2 + i/2 + n)|^2 * cosh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 11 2016 E.g.f.: 2F0((1-i)/2,(1+i)/2; ; 2*x). - Benedict W. J. Irwin, Oct 19 2016 MATHEMATICA Table[Product[(2*k*(k-1)+1), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 10 2016 *) Round@Table[2^n Abs[Gamma[1/2 + I/2 + n]]^2 Cosh[Pi/2]/Pi, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *) Rest@(CoefficientList[Series[HypergeometricPFQ[{1/2 - I/2, 1/2 + I/2}, {}, 2 x], {x, 0, 20}], x]*Range[0, 20]!) (* Benedict W. J. Irwin, Oct 19 2016 *) PROG (PARI) a(n) = prod(k=1, n, 2*k*(k-1)+1); CROSSREFS Cf. A001844. Sequence in context: A157097 A234295 A251575 * A276755 A218221 A046881 Adjacent sequences:  A277344 A277345 A277346 * A277348 A277349 A277350 KEYWORD nonn AUTHOR Michel Marcus, Oct 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)