The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277345 a(n) = Gamma(n+1, phi)*exp(phi) + Gamma(n+1, 1-phi)*exp(1-phi), where phi=(1+sqrt(5))/2. 2
 2, 3, 9, 31, 131, 666, 4014, 28127, 225063, 2025643, 20256553, 222822282, 2673867706, 34760280699, 486643930629, 7299658960799, 116794543374991, 1985507237378418, 35739130272817302, 679043475183538087, 13580869503670776867, 285198259577086338683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Gamma(a, x) is the upper incomplete Gamma function. LINKS Eric Weisstein's MathWorld, Incomplete Gamma Function, Golden Ratio. FORMULA E.g.f: (exp(phi*x) + exp((1-phi)*x))/(1-x). Recurrence: n*(a(n) + a(n-1)) = (n+3)*a(n+1) - a(n+2). a(n) ~ 2*exp(1/2)*cosh(sqrt(5)/2) * (n-1)!. - Vaclav Kotesovec, Oct 10 2016 MATHEMATICA RecurrenceTable[{a[0] == 2, a[1] == 3, a[2] == 9, n (a[n] + a[n - 1]) == (n + 3) a[n + 1] - a[n + 2]}, a[n], {n, 0, 20}] (* or *) Round@Table[Gamma[n + 1, GoldenRatio] Exp[GoldenRatio] + Gamma[n + 1, 1 - GoldenRatio] Exp[1 - GoldenRatio], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *) CROSSREFS Cf. A263823. Sequence in context: A073950 A281270 A322752 * A259943 A296263 A064020 Adjacent sequences:  A277342 A277343 A277344 * A277346 A277347 A277348 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Oct 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 03:10 EST 2020. Contains 331291 sequences. (Running on oeis4.)