login
A277338
Reverse and Add! sequence starting with 295.
0
295, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, 35322452, 60744805, 111589511, 227574622, 454050344, 897100798, 1794102596, 8746117567, 16403234045, 70446464506, 130992928913, 450822227944, 900544455998, 1800098901007, 8801197801088, 17602285712176, 84724043932847, 159547977975595
OFFSET
0,1
COMMENTS
Apart from the initial term in both sequences, the same as A006960.
a(0) = 295; a(n+1) = a(n) + A004086(a(n)).
295 is conjectured to be the second smallest initial term which does not lead to a palindrome. Also, 196 is possibly the smallest initial term which does not lead to a palindrome. a(0) = 196 is described in A006960.
FORMULA
a(n) = A006960(n) for n >= 1.
a(n) = A243238(295, n+1). - Felix Fröhlich, Nov 20 2016
EXAMPLE
a(0) = 295
a(1) = 295 + 592 = 887
a(2) = 887 + 788 = 1675
...
MAPLE
with(StringTools):
revnum := proc (n)
local a, b, c;
description "to REVerse the digits of a NUMber";
a := convert(n, string);
b := Reverse(a);
c := convert(b, decimal, 10)
end proc;
f := 0;
e := 295;
count := 0;
while f <> e do
e := e+f;
f := revnum(e);
count := count+1
end do;
MATHEMATICA
a[1] = 295; a[n_] := a[n] = FromDigits@ Reverse@ IntegerDigits@ # + # &@ a[n - 1]; Array[a, 29] (* Michael De Vlieger, Oct 14 2016 *)
PROG
(PARI) terms(n) = my(x=295, i=0); while(1, print1(x, ", "); x=x+eval(concat(Vecrev(Str(x)))); i++; if(i==n, break))
/* Print initial 30 terms as follows: */
terms(30) \\ Felix Fröhlich, Nov 15 2016
CROSSREFS
Cf. A004086.
Almost the same as A006960.
See index entries at A023108.
Sequence in context: A063049 A131274 A074868 * A252083 A279052 A237803
KEYWORD
nonn,base
AUTHOR
Matt C. Anderson, Oct 09 2016
STATUS
approved