login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277337
Number of pairs of functions (f,g) from a set of n elements into itself that are generalized reflexive inverses of each other.
1
1, 1, 6, 87, 2056, 71145, 3355956, 203899087, 15451934016, 1419181414929, 154796303577700, 19713331210664751, 2891162097251141616, 482733064744447450297, 90871916094948544512516, 19125402877558442317308975, 4467829768503489097383022336, 1151133088512781095709101702177, 325279313240363190497696752254276
OFFSET
0,3
COMMENTS
The number of pairs of functions (f,g) from a set of n elements into itself such that f(g(f(x))) = f(x) and g(f(g(x))) = g(x).
LINKS
FORMULA
a(n) = Sum_{k=0..n} ((n! / (n - k)!) * C(n, k) * k^(2 * (n - k))).
EXAMPLE
For n=2 the a(2)=6 solutions are
1: [1,1] [1,1]
2: [1,1] [2,2]
3: [2,2] [1,1]
4: [2,2] [2,2]
5: [1,2] [1,2]
6: [2,1] [2,1]
MATHEMATICA
Flatten[{1, Table[Sum[n!*Binomial[n, k]*k^(2*(n-k))/(n-k)!, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2016 *)
PROG
(PARI) a(n) = sum(k = 1, n, n! / (n - k)! * binomial(n, k) * k^(2 * (n - k) ) ); \\ Joerg Arndt, Oct 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
David Einstein, Oct 09 2016
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 20 2016
STATUS
approved