OFFSET
0,2
COMMENTS
If a(33) exists, it must be greater than 2*10^8.
a(n) for n >= 34: 321, 310, 355, 248, 249, 166, 213, 418, 376, 602, 426, 142, 570, 310, 445, 248, 249, 158, 267, 406, 632, 166, 267, ...
The records occur at indices 0, 1, 2, 3, 33, 207, 471, ... with values 1, 14, 33, 42677635, 891528365, 2944756815, 3659575815, ... - Amiram Eldar, Feb 17 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
EXAMPLE
a(2) = 33 because 33 is the smallest number such that tau(33) = tau(35) = 4 and simultaneously sigma(33) = sigma(35) = 48.
MATHEMATICA
a[k_] := Module[{n=1}, While[DivisorSigma[0, n] != DivisorSigma[0, n+k] || DivisorSigma[1, n] != DivisorSigma[1, n+k], n++]; n]; Array[a, 50, 0] (* Amiram Eldar, Feb 17 2019 *)
PROG
(Magma) A276715:=func<n|exists(r){k:k in[1..1000000] | NumberOfDivisors(k) eq NumberOfDivisors(k+n) and SumOfDivisors(k) eq SumOfDivisors(k+n)}select r else 0>; [A276715(n):n in[0..32]]
(Python)
from itertools import count
from sympy import divisor_sigma
def A276715(n): return next(k for k in count(1) if all(divisor_sigma(k, i)==divisor_sigma(n+k, i) for i in (0, 1))) # Chai Wah Wu, Jul 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 16 2016
EXTENSIONS
a(33) onwards from Amiram Eldar, Feb 17 2019
STATUS
approved