login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276288 a(n) = a(n-1) + 3*a(n-2) if n is even, otherwise a(n) = 3*a(n-1) + a(n-2), a(0)=0, a(1)=1. 0
0, 1, 1, 4, 7, 25, 46, 163, 301, 1066, 1969, 6973, 12880, 45613, 84253, 298372, 551131, 1951765, 3605158, 12767239, 23582713, 83515378, 154263517, 546305929, 1009096480, 3573595369, 6600884809, 23376249796, 43178904223, 152912962465, 282449675134, 1000261987867, 1847611013269, 6543095027674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..33.

Index entries for linear recurrences with constant coefficients, signature (0,7,0,-3).

FORMULA

G.f.: x*(1 + x - 3*x^2)/(1 - 7*x^2 + 3*x^4).

a(n) = 7*a(n-2) - 3*a(n-4).

a(n) = (2 - (-1)^n)*a(n-1) + (2 + (-1)^n)*a(n-2) for n > 1, a(0)=0, a(1)=1.

a(2k) = A190972(k).

MATHEMATICA

LinearRecurrence[{0, 7, 0, -3}, {0, 1, 1, 4}, 34]

RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (2 - (-1)^n) a[n - 1] + (2 + (-1)^n) a[n - 2]}, a, {n, 33}]

PROG

(PARI) concat(0, Vec(x*(1+x-3*x^2)/(1-7*x^2+3*x^4) + O(x^99))) \\ Altug Alkan, Aug 27 2016

CROSSREFS

Cf. A005824, A010684, A079162, A190972.

Sequence in context: A079441 A129418 A073218 * A219700 A151348 A211942

Adjacent sequences:  A276285 A276286 A276287 * A276289 A276290 A276291

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Aug 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:20 EST 2021. Contains 349567 sequences. (Running on oeis4.)