login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276289
Expansion of x*(1 + x)/(1 - 2*x)^3.
5
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
OFFSET
0,3
COMMENTS
Binomial transform of pentagonal numbers (A000326).
More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function.
Coefficients in the hypergeometric series identity 1 - 7*x/(x + 6) + 30*x*(x - 1)/((x + 6)*(x + 8)) - 104*x*(x - 1)*(x - 2)/((x + 6)*(x + 8)*(x + 10)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A077616 and A084901. - Peter Bala, May 30 2019
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number
FORMULA
O.g.f.: x*(1 + x)/(1 - 2*x)^3.
E.g.f.: x*(2 + 3*x)*exp(2*x)/2.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.
a(n) = 2^(n-3)*n*(3*n + 1).
Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...
MAPLE
a:=series(x*(1+x)/(1-2*x)^3, x=0, 31): seq(coeff(a, x, n), n=0..40); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
PROG
(PARI) concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
(Magma) [2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
(Sage) [2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
(GAP) List([0..40], n-> 2^(n-3)*n*(3*n+1)) # G. C. Greubel, Jun 02 2019
CROSSREFS
Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers).
Sequence in context: A045889 A038739 A038798 * A062455 A364655 A368528
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 27 2016
STATUS
approved