The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276289 Expansion of x*(1 + x)/(1 - 2*x)^3. 5
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Binomial transform of pentagonal numbers (A000326).
More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function.
Coefficients in the hypergeometric series identity 1 - 7*x/(x + 6) + 30*x*(x - 1)/((x + 6)*(x + 8)) - 104*x*(x - 1)*(x - 2)/((x + 6)*(x + 8)*(x + 10)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A077616 and A084901. - Peter Bala, May 30 2019
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number
FORMULA
O.g.f.: x*(1 + x)/(1 - 2*x)^3.
E.g.f.: x*(2 + 3*x)*exp(2*x)/2.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.
a(n) = 2^(n-3)*n*(3*n + 1).
Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...
MAPLE
a:=series(x*(1+x)/(1-2*x)^3, x=0, 31): seq(coeff(a, x, n), n=0..40); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
PROG
(PARI) concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
(Magma) [2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
(Sage) [2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
(GAP) List([0..40], n-> 2^(n-3)*n*(3*n+1)) # G. C. Greubel, Jun 02 2019
CROSSREFS
Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers).
Sequence in context: A045889 A038739 A038798 * A062455 A364655 A368528
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 27 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 13:44 EDT 2024. Contains 372738 sequences. (Running on oeis4.)