The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276289 Expansion of x*(1 + x)/(1 - 2*x)^3. 5
 0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of pentagonal numbers (A000326). More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function. Coefficients in the hypergeometric series identity 1 - 7*x/(x + 6) + 30*x*(x - 1)/((x + 6)*(x + 8)) - 104*x*(x - 1)*(x - 2)/((x + 6)*(x + 8)*(x + 10)) + ... = 0, valid in the half-plane Re(x) > 0. Cf. A077616 and A084901. - Peter Bala, May 30 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Pentagonal Number Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA O.g.f.: x*(1 + x)/(1 - 2*x)^3. E.g.f.: x*(2 + 3*x)*exp(2*x)/2. a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2. a(n) = 2^(n-3)*n*(3*n + 1). Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687... MAPLE a:=series(x*(1+x)/(1-2*x)^3, x=0, 31): seq(coeff(a, x, n), n=0..40); # Paolo P. Lava, Mar 27 2019 MATHEMATICA LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40] Table[2^(n - 3) n (3 n + 1), {n, 0, 40}] PROG (PARI) concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016 (Magma) [2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019 (Sage) [2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019 (GAP) List([0..40], n-> 2^(n-3)*n*(3*n+1)) # G. C. Greubel, Jun 02 2019 CROSSREFS Cf. A000326, A084901. Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers). Sequence in context: A045889 A038739 A038798 * A062455 A364655 A368528 Adjacent sequences: A276286 A276287 A276288 * A276290 A276291 A276292 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Aug 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 13:44 EDT 2024. Contains 372738 sequences. (Running on oeis4.)