The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276284 a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n > 4, a(n) = ( a(n-1)+a(n-3)+1 )*( a(n-2)+a(n-4)+1 ) / a(n-5). 1
 1, 1, 1, 1, 1, 9, 33, 385, 13825, 5474305, 8430415841, 1398605982547209, 30625582893143965429313, 3098236789946633955987434183345281, 17332850039068891068793031113694107707268123637761 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..21 FORMULA a(n) = (8-4*(-1)^n)*a(n-1)*a(n-3) - a(n-2) - a(n-4) - 1 for n>3. MATHEMATICA RecurrenceTable[{a[n] == (a[n - 1] + a[n - 3] + 1) (a[n - 2] + a[n - 4] + 1)/a[n - 5], a[0] == a[1] == a[2] == a[3] == a[4] == 1}, a, {n, 0, 14}] (* Michael De Vlieger, Aug 27 2016 *) nxt[{a_, b_, c_, d_, e_}]:={b, c, d, e, (e+c+1) (d+b+1)/a}; NestList[nxt, {1, 1, 1, 1, 1}, 15][[All, 1]] (* Harvey P. Dale, Dec 14 2021 *) PROG (Ruby) def A(m, n) a = Array.new(2 * m + 1, 1) ary = [1] while ary.size < n + 1 i = (1..m).inject(1){|s, i| s + a[2 * i - 1]} * (1..m).inject(1){|s, i| s + a[2 * i]} break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A276284(n) A(2, n) end CROSSREFS Cf. A276123. Sequence in context: A183939 A145952 A172498 * A275695 A145925 A028568 Adjacent sequences: A276281 A276282 A276283 * A276285 A276286 A276287 KEYWORD nonn AUTHOR Seiichi Manyama, Aug 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 22:55 EDT 2023. Contains 365503 sequences. (Running on oeis4.)