login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276284
a(0) = a(1) = a(2) = a(3) = a(4) = 1; for n > 4, a(n) = ( a(n-1)+a(n-3)+1 )*( a(n-2)+a(n-4)+1 ) / a(n-5).
1
1, 1, 1, 1, 1, 9, 33, 385, 13825, 5474305, 8430415841, 1398605982547209, 30625582893143965429313, 3098236789946633955987434183345281, 17332850039068891068793031113694107707268123637761
OFFSET
0,6
LINKS
FORMULA
a(n) = (8-4*(-1)^n)*a(n-1)*a(n-3) - a(n-2) - a(n-4) - 1 for n>3.
MATHEMATICA
RecurrenceTable[{a[n] == (a[n - 1] + a[n - 3] + 1) (a[n - 2] + a[n - 4] + 1)/a[n - 5], a[0] == a[1] == a[2] == a[3] == a[4] == 1}, a, {n, 0, 14}] (* Michael De Vlieger, Aug 27 2016 *)
nxt[{a_, b_, c_, d_, e_}]:={b, c, d, e, (e+c+1) (d+b+1)/a}; NestList[nxt, {1, 1, 1, 1, 1}, 15][[All, 1]] (* Harvey P. Dale, Dec 14 2021 *)
PROG
(Ruby)
def A(m, n)
a = Array.new(2 * m + 1, 1)
ary = [1]
while ary.size < n + 1
i = (1..m).inject(1){|s, i| s + a[2 * i - 1]} * (1..m).inject(1){|s, i| s + a[2 * i]}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276284(n)
A(2, n)
end
CROSSREFS
Cf. A276123.
Sequence in context: A183939 A145952 A172498 * A275695 A145925 A028568
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 27 2016
STATUS
approved