OFFSET
0,4
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences", PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
Index entries for linear recurrences with constant coefficients, signature (0,17,0,-17,0,1).
FORMULA
a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
MATHEMATICA
LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
nxt[{a_, b_, c_}]:={b, c, ((c+1)(b+1))/a}; NestList[nxt, {1, 1, 1}, 30][[All, 1]] (* Harvey P. Dale, Oct 01 2021 *)
PROG
(PARI) Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
(Magma) I:=[1, 1, 1, 4, 10, 55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Langlois, Aug 21 2016
EXTENSIONS
More terms from Colin Barker, Aug 21 2016
STATUS
approved