login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).
6

%I #46 Jul 04 2024 14:12:49

%S 1,1,1,4,10,55,154,868,2449,13825,39025,220324,621946,3511351,9912106,

%T 55961284,157971745,891869185,2517635809,14213945668,40124201194,

%U 226531261495,639469583290,3610286238244,10191389131441,57538048550401,162422756519761

%N a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

%H Colin Barker, <a href="/A276123/b276123.txt">Table of n, a(n) for n = 0..1000</a>

%H Matthew Christopher Russell, <a href="https://doi.org/doi:10.7282/T3MC926D">Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences"</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,17,0,-17,0,1).

%F a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.

%F From _Colin Barker_, Aug 21 2016: (Start)

%F a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.

%F G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)

%F a(2n+1) = A073352(n). a(2n) = A048907(n). - _R. J. Mathar_, Jul 04 2024

%t LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* _Vincenzo Librandi_, Aug 27 2016 *)

%t nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* _Harvey P. Dale_, Oct 01 2021 *)

%o (PARI) Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ _Colin Barker_, Aug 21 2016

%o (Magma) I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // _Vincenzo Librandi_, Aug 27 2016

%Y Cf. A072881, A076839, A276175.

%K nonn,easy

%O 0,4

%A _Bruno Langlois_, Aug 21 2016

%E More terms from _Colin Barker_, Aug 21 2016