login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275695
a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1; for n>6, a(n) = ( a(n-1)+a(n-3)+a(n-5) )*( a(n-2)+a(n-4)+a(n-6) ) / a(n-7).
1
1, 1, 1, 1, 1, 1, 1, 9, 33, 385, 13825, 5474305, 75873853441, 415386585427968001, 3501887406773528570406162401, 44079910680970588907541344275243042224979209, 400942556117903539711475671972145122347091674105174721165559627509313
OFFSET
0,8
LINKS
FORMULA
a(n) = (8-4*(-1)^n)*a(n-1)*a(n-3)*a(n-5) - a(n-2) - a(n-4) - a(n-6).
MATHEMATICA
RecurrenceTable[{a[n] == (a[n - 1] + a[n - 3] + a[n - 5]) (a[n - 2] + a[n - 4] + a[n - 6])/a[n - 7], a[0] == a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 0, 16}] (* Michael De Vlieger, Aug 25 2016 *)
nxt[{a_, b_, c_, d_, e_, f_, g_}]:={b, c, d, e, f, g, ((g+e+c)(f+d+b))/a}; NestList[ nxt, {1, 1, 1, 1, 1, 1, 1}, 20][[All, 1]] (* Harvey P. Dale, May 04 2019 *)
PROG
(PARI) a(n) = if (n <=6, 1, (a(n-1)+a(n-3)+a(n-5))*(a(n-2)+a(n-4)+a(n-6))/a(n-7)); \\ Michel Marcus, Aug 25 2016
(Ruby)
def A(m, n)
a = Array.new(2 * m + 1, 1)
ary = [1]
while ary.size < n + 1
i = (1..m).inject(0){|s, i| s + a[2 * i - 1]} * (1..m).inject(0){|s, i| s + a[2 * i]}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A275695(n)
A(3, n)
end # Seiichi Manyama, Aug 27 2016
(Magma) I:=[1, 1, 1, 1, 1, 1, 1]; [n le 7 select I[n] else (Self(n-1) + Self(n-3) + Self(n-5))*(Self(n-2) + Self(n-4) + Self(n-6))/Self(n-7): n in [1..17]]; // G. C. Greubel, Feb 21 2018
CROSSREFS
Sequence in context: A145952 A172498 A276284 * A145925 A028568 A199298
KEYWORD
nonn
AUTHOR
Bruno Langlois, Aug 21 2016
STATUS
approved