login
A276108
Numbers expressible as perfect powers in a composite number of ways.
1
1, 65536, 43046721, 68719476736, 152587890625, 2821109907456, 33232930569601, 281474976710656, 10000000000000000, 45949729863572161, 150094635296999121, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616
OFFSET
1,2
COMMENTS
Old title was "Values of A117453(n) such that A175066(n) is not a prime number."
Terms are 1, 2^16, 3^16, 2^36, ...
Numbers m^k, where m is not a perfect power and k is a composite number in A154893 or 0. - Charlie Neder, Mar 02 2019
EXAMPLE
65536 = 2^16 is a term because there are 4 corresponding ways that are 2^16, 4^8, 16^4, 256^2.
PROG
(Python)
from sympy import mobius, integer_nthroot, isprime, divisor_count
def A276108(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x, k)[0]-1+sum(integer_nthroot(x, i*k)[0]-1 for i in range(2, (x//k).bit_length()) if isprime(i) or isprime(divisor_count(i)-1))) for k in range(1, x.bit_length())))
return bisection(f, n, n) # Chai Wah Wu, Nov 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Aug 27 2016
EXTENSIONS
New title from Charlie Neder, Mar 04 2019
a(5)-a(16) from Chai Wah Wu, Nov 25 2024
STATUS
approved