login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175066
a(1) = 1, for n >= 2: a(n) = number of ways h to write perfect powers A117453(n) as m^k (m >= 2, k >= 2).
7
1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 5, 2, 2, 2, 2, 3, 5, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 7, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2
OFFSET
1,2
COMMENTS
Perfect powers with first occurrence of h >= 2: 16, 64, 65536, 4096, ... (A175065)
a(n) for n>1 is the subsequence of A253642 formed by the terms which exceed 1; equivalently, a(n)+1 for n>1 is the subsequence of A175064 formed by the terms which exceed 2. Also, sum of a(n)-1 over such n that A117453(n)<10^m gives A275358(m). - Andrey Zabolotskiy, Aug 16 2016
Numbers n such that a(n) is nonprime are 1, 26, 110, ... - Altug Alkan, Aug 22 2016
FORMULA
If A117453(n) = m^k with k maximal, then a(n) = tau(k) - 1. - Charlie Neder, Mar 02 2019
EXAMPLE
For n = 12, A117453(12) = 4096 and a(12)=5 since there are 5 ways to write 4096 as m^k: 64^2 = 16^3 = 8^4 = 4^6 = 2^12.
729=27^2=9^3=3^6 and 1024=32^2=4^5=2^10 yield a(8)=a(9)=3. - R. J. Mathar, Jan 24 2010
PROG
(PARI) lista(nn) = {print1(1, ", "); for (i=2, nn, if (po = ispower(i), np = sum(j=2, po, ispower(i, j)); if (np>1, print1(np, ", ")); ); ); } \\ Michel Marcus, Mar 20 2013
(Python)
from math import gcd
from sympy import mobius, integer_nthroot, factorint, divisor_count, primerange
def A175066(n):
if n == 1: return 1
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x, k)[0]-1+sum(integer_nthroot(x, p*k)[0]-1 for p in primerange((x//k).bit_length()))) for k in range(1, x.bit_length())))
return divisor_count(gcd(*factorint(bisection(f, n, n)).values()))-1 # Chai Wah Wu, Nov 24 2024
CROSSREFS
Cf. A117453.
Sequence in context: A296658 A276862 A371442 * A066102 A036048 A145384
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 23 2010
EXTENSIONS
Corrected and extended by R. J. Mathar, Jan 24 2010
STATUS
approved