login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers expressible as perfect powers in a composite number of ways.
1

%I #47 Nov 26 2024 18:11:11

%S 1,65536,43046721,68719476736,152587890625,2821109907456,

%T 33232930569601,281474976710656,10000000000000000,45949729863572161,

%U 150094635296999121,184884258895036416,665416609183179841,2177953337809371136,6568408355712890625,18446744073709551616

%N Numbers expressible as perfect powers in a composite number of ways.

%C Old title was "Values of A117453(n) such that A175066(n) is not a prime number."

%C Terms are 1, 2^16, 3^16, 2^36, ...

%C Numbers m^k, where m is not a perfect power and k is a composite number in A154893 or 0. - _Charlie Neder_, Mar 02 2019

%H Chai Wah Wu, <a href="/A276108/b276108.txt">Table of n, a(n) for n = 1..10000</a>

%e 65536 = 2^16 is a term because there are 4 corresponding ways that are 2^16, 4^8, 16^4, 256^2.

%o (Python)

%o from sympy import mobius, integer_nthroot, isprime, divisor_count

%o def A276108(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return int(n+sum(mobius(k)*(integer_nthroot(x,k)[0]-1+sum(integer_nthroot(x,i*k)[0]-1 for i in range(2,(x//k).bit_length()) if isprime(i) or isprime(divisor_count(i)-1))) for k in range(1,x.bit_length())))

%o return bisection(f,n,n) # _Chai Wah Wu_, Nov 25 2024

%Y Cf. A117453, A154893, A175066.

%K nonn,changed

%O 1,2

%A _Altug Alkan_, Aug 27 2016

%E New title from _Charlie Neder_, Mar 04 2019

%E a(5)-a(16) from _Chai Wah Wu_, Nov 25 2024