login
A275655
a(n) = binomial(6*n,3*n)*binomial(2*n,n).
4
1, 40, 5544, 972400, 189290920, 39089615040, 8385425017200, 1847301025078080, 415026659401497000, 94660194875011205440, 21850091031597537252544, 5092815839064962373499680, 1196622940864849837505171824, 283073284848591452381449360000
OFFSET
0,2
COMMENTS
Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)*binomial(6*n + k,6*n - k)*binomial(2*k,k) *binomial(2*n - k,n) = binomial(6*n,3*n)*binomial(2*n,n).
We also note that Sum_{k = 0..6*n} (-1)^(n+k)*binomial(6*n + k,6*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = binomial(6*n,3*n)*binomial(2*n,n).
Compare with Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k, k)*binomial(2*n - k,n) = binomial(2*n,n))^2 = A002894(n). See also A275652, A275653 and A275654.
FORMULA
a(n) = (6*n)!*(2*n)!/((3*n)!*n!)^2.
a(n) = A066802(n) * A000984(n).
Recurrence: a(n) = 16*(2*n - 1)^2*(6*n - 1)*(6*n - 5)/(n^2*(3*n - 1)*(3*n - 2)) * a(n-1).
a(n) = [x^(3*n)] (1 + x)^(6*n) * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(8*n) where G(x) = 1 + 5*x + 159*x^2 + 11690*x^3 + 1160817*x^4 + 135123516*x^5 + 17357714116*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^8, where F(x) = 1 + 5*x + 359*x^2 + 42270*x^3 + 6182313*x^4 + 1021669966*x^5 + 182605696304*x^6 + ... appears to have integer coefficients.
a(n) ~ 256^n/(sqrt(3)*Pi*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 23 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(5*n-k-1,n-k)*binomial(6*n,k)^2.
a(n) = [x^n] (1 - x)^(2*n) * P(6*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A275652.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)
MAPLE
seq((6*n)!*(2*n)!/((3*n)!*n!)^2, n = 0..20);
MATHEMATICA
Table[Binomial[6 n, 3 n] Binomial[2 n, n], {n, 0, 13}] (* Michael De Vlieger, Aug 07 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 04 2016
STATUS
approved