The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275653 a(n) = binomial(4*n,2*n)*binomial(3*n,2*n). 4
1, 18, 1050, 77616, 6370650, 554822268, 50199951984, 4664758248000, 442077195513690, 42533571002422500, 4141601026094832300, 407220411993767798400, 40363606408574136870000, 4028061310168832261158176, 404311537318239680601595200, 40785601782042745410592271616 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^(n+k)*binomial(4*n + k,4*n - k)*binomial(2*k,k)* binomial(2*n - k,n) = binomial(4*n,2*n)* binomial(3*n,2*n).
We also have Sum_{k = 0..4*n} (-1)^(n+k)*binomial(4*n + k,4*n - k)*binomial(2*k,k)*binomial(2*n - k,n) = binomial(4*n,2*n)* binomial(3*n,2*n).
Compare with the identities
Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n + k,2*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(2*n,n)^2 = A002894(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(6*n + k,6*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(6*n,3*n)* binomial(2*n,n) = A275655(n)
Sum_{k = 0..n} (-1)^(n+k)*binomial(8*n + k,8*n - k)* binomial(2*k,k)*binomial(2*n - k,n) = binomial(8*n,4*n)* binomial(5*n,2*n)*binomial(2*n,n)/binomial(6*n,3*n).
See also A275652, A275654 and A275655.
LINKS
FORMULA
a(n) = (4*n)!*(3*n)!/(n!*(2*n)!^3).
a(n) = A001448(n) * A005809(n).
Recurrence: a(n) = 3*(3*n - 1)*(3*n - 2)*(4*n - 1)*(4*n - 3)/(n^2*(2*n - 1)^2) * a(n-1).
a(n) = [x^n] ((1 + x)^2/(1 - x))^(2*n) * [x^n] (1 + x)^(3*n) = [x^n] G(x)^(6*n) where G(x) = 1 + 3*x + 38*x^2 + 1150*x^3 + 47099^x^4 + 2264968*x^5 + 120311611*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^6, where F(x) = 1 + 3*x + 92*x^2 + 4579*x^3 + 282605*x^4 + 19698991*x^5 + 1484923315*x^6 + ... appears to have integer coefficients.
a(n) ~ sqrt(3/2)*108^n/(2*Pi*n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, Mar 23 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(3*n-k-1,n-k)*binomial(4*n,k)^2.
a(n) = [x^n] (1 - x)^(2*n) * P(4*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A275652.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. (End)
MAPLE
seq((4*n)!*(3*n)!/(n!*(2*n)!^3), n = 0..20);
MATHEMATICA
Table[Binomial[4 n, 2 n] Binomial[3 n, 2 n], {n, 0, 15}] (* Michael De Vlieger, Aug 07 2016 *)
CROSSREFS
Sequence in context: A073960 A095786 A214181 * A214232 A146197 A301651
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 04 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 12:08 EDT 2024. Contains 372532 sequences. (Running on oeis4.)