login
A275315
Average of amicable pairs (x,y), ordered by the smaller value x given in A002025.
3
252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 69552, 66960, 69120, 78624, 84240, 112320, 131040, 122760, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 657720, 673920, 648000, 725760, 761400, 833280, 890568, 939600
OFFSET
1,1
COMMENTS
Each term represents the midpoint of an interval (x,y), where x (A002025) and y (A002046) form a pair of amicable numbers (A259180). The length and radius of each interval can be found in A066539 and A162884, respectively.
This sequence is not monotonic (specifically, not nondecreasing), since x+y (A180164) is not monotonic. For a monotonic (nondecreasing) ordering of these averages, see A275316.
It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd). If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..142 from Timothy L. Tiffin)
FORMULA
a(n) = [A002025(n) + A002046(n)]/2 = A180164(n)/2.
EXAMPLE
a( 1) = ( 220 + 284)/2 = 504/2 = 252.
a( 2) = ( 1184 + 1210)/2 = 2394/2 = 1197.
a( 3) = ( 2620 + 2924)/2 = 5544/2 = 2772.
... ... ... ... ...
a( 9) = ( 63020 + 76084)/2 = 139104/2 = 69552.
a( 10) = ( 66928 + 66992)/2 = 133920/2 = 66960.
a( 11) = ( 67095 + 71145)/2 = 138240/2 = 69120.
... ... ... ... ...
a( 15) = ( 122265 + 139815)/2 = 262080/2 = 131040.
a( 16) = ( 122368 + 123152)/2 = 245520/2 = 122760.
a( 17) = ( 141664 + 153176)/2 = 294840/2 = 147420.
... ... ... ... ...
a( 32) = ( 609928 + 686072)/2 = 1296000/2 = 648000.
... ... ... ... ...
a( 35) = ( 643336 + 652664)/2 = 1296000/2 = 648000.
... ... ... ... ...
a(105) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
... ... ... ... ...
a(109) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
... ... ... ... ...
a(137) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(138) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
... ... ... ... ...
KEYWORD
nonn
AUTHOR
Timothy L. Tiffin, Jul 22 2016
STATUS
approved